WEATHERSENSE PROJECT

WEATHER
SENSE

Presentation, April 2024

PRESENTATION

PRESENTATION WEATHERSENSE PROJECT

About Project

WeatherSense is a weather tracking website
that updates weather data and classification
every 10 minutes. Leveraging our trained
random forest classification model,
WeatherSense provides accurate classification

and historical weather information.

PRESENTATION WEATHERSENSE PROJECT

HOW IT WORK?

THE SYSTEM COLLECTS DATA USING THE KY-015 SENSOR AND INTEGRATES WITH THE
OPENWEATHERMAP API TO ENSURE RELIABILITY. NODE-RED ASSISTS IN DATA CORRECTION.

OpenWeather

WEATHERSENSE PROJECT

FRONTEND

WE DEVELOP FRONTEND USING SVELTEKIT FRAME WORK AND TRILWINDSGSS

" tailwindcss

BACKEND

DEVELOP BACKEND BY NODEJS + EXPRESS , NODERED, KU MUSQL SERVER

no®de EXPRESS Js

Node-RED

WEATHERSENSE PROJECT

MODEL SERVER

DEVELOPMENT BY FLASK

REAL WEBSITE SHOWCASE

WeatherSense Home Hittory Grithub Contact Data Visualize
WeatherSense OpenWeatherAP|

__ 9

Temperature Sensor “C Histogram Temperature APl *C Histogram Cloudiness Percent Histogram Humidity Sensor Percent Histogram

Humidity APl Percent Histogram Wind Speed m/s Histogram Pressure HectoPascal Histogram Temperature&Humidity Scatter

REAL WEBSITE SHOWCASE

WEchEI'E-EHEE Home History Github Contact

Latest update on April 23, 2024 at 3:25 PM

WeatherSens OpenWeatherMap

Clouds Clouds

Temperature WeatherSense Temperature OpenWeatherMap Temperature Percentage Error
27 “C 2783 °C 28.63 Percent

Humidity WeatherSense Humidity OpenWeatherMap Humidity Percentage Error
69 Percent 44 Percent 56.872 Percent
Cloudiness Pressure Wind Speed

20 Percent 1005 Hectopascal 5.66 m/s

REAL WEBSITE SHOWCASE

WeatherSense

Home History Github Contact

Data on April 23,

Diata on April 23,

Dats on April 23,

Dats on April 23,

Data on Apnl 23,

Data on April 23,

Data on April 23,

Diats on April 23,

2024 at 3:25 PM

2024 at 12238 PM

2024 at 12:08 PM

L0204 at 11:38 AM

L0024 a1 11:08 AM

Z024 at 10:38 AM

FOZ4 &t 10:08 AM

2024 at 238 AM

Data on April 21,

Data on April 23,

Data on April 23,

Data on April 23,

Data aon Aprl 23,

Diata on Aprl 23,

Data on April 23,

Data on April 23,

2024 at 3:15 PM

2024 at 12:28 PM

2024 at 11:58 AM

L2024 at 11:28 AM

2024 at 10258 AM

2024 at 1028 AM

2024 at 558 AM

2024 st 928 AM

Data on April 23, 2024 at 3:05 PM

Data on April 23, 2024 at 12:18 PM

Data on April 23, 2024 at 11:48 AM

Data on April 23, 2024 at 11:18 AM

Data on April 23, 2024 at 10:48 AM

Data on ﬂ.pril 23, 2024 at 10:18 AM

Data on ﬂ.prll &3, 2024 at 948 AM

Data on April 23, 2024 at 9218 AM

-
(8
Ll
J
o
[0 4
o
Ll
N
<
Ll
N
x
Ll
XL
-
<
L
S

TEST PLAN

v

WEATHERSENSE PROJECT

TEST PLAN

Objective: As our project comprises three major components, we want to make
sure they function independently and integrated together.

Strategy: We will use both manual and automated tools to test our project.

Strategy:
We will use both manual and automated tools to test our project.
Activities:

1.Choose one of the three major components.

2.Choose the part that we want to test on its functionality.

3. Determine the objective of our test on the part.

4.Set a clear starting and ending point for each part that we want to test.

EEEEEEEEEEEE WEATHERSENSE PROJECT

FRONTEND TEST

WE DEGIDED TO TEST WITH VITEST, PLAYWRIGHT, POSTMAN

SO

WEATHERSENSE PROJECT

" Frontend

Unit testing UNIT

TESTING

Unit testing on the frontend is conducted using

Vitest and jestdom, which focuses on testing
Svelte components to ensure each component
functions as expected. Since our website is not
complex and has minimal functionality,

functional testing is deemed unnecessary.

PRESENTATION

WEATHERSENSE PROJECT

TEST SCENARIO
AND SOME TEST CASE

IN FRONTEND UNIT TESTING SHOW CASE

PRESENTATION WEATHERSENSE PROJECT

TEST SCENARIO

Test Scenario:
Rendenng Svelte Components with Props

Description:
This test scenano venfies that all Svelte components render correctly with their
respective props.

Precondition:

1. The Svelte component 1s available.
2. Props are correctly defined and accessible within the component.

Step:
1. Instantiate the Svelte component.
2. Venfy that each prop i1s comectly rendered within the component.

Expected Result:
1. The Svelte component renders without error.

2. Each prop 1s displayed or utiized as expected within the component.

PRESENTATION WEATHERSENSE PROJECT

COMPONENT TESTING TESTCASE

CARD COMPONENT

Test Case title:
Card should render with title and value

Preconditions:
1. The Card.svelte component is available.
2. Props are correctly defined and accessible within the component.

Test step:
1. Render Card with defined props.
2. Verify Card component.

Expected result:
1. The Card component renders correctly without errors.
2. Both title and value props are displayed correctly.

Test environment: JestDOM

Actual resulit:
1. The Card component renders correctly without errors.
2. Props are displayed cormrectly.

Test Scenario:Rendenng Svelte Components with Props

Status: Pass

PRESENTATION WEATHERSENSE PROJECT

COMPONENT TESTING CODE

CARD COMPONENT

15

CHECKING CARD COMPONENT REDENDER SUCESSFULL
ALL PROPS ARE IN THE COMPONENT

WEATHERSENSE PROJECT

" Frontend
Integration
Testing

In integration testing, we utilize Vitest similarly to

unit testing, and we also employ Postman for

testing. Our focus during testing is on requests to
every existing webpage route and checking the

responses.

PRESENTATION

WEATHERSENSE PROJECT

TEST SCENARIO
AND SOME TEST CASE

IN FRONTEND INTEGRATION TESTING SHOW GASE

PRESENTATION WEATHERSENSE PROJECT

TEST SCENARIO

Test Scenario:
HT TP Request to every web page route

Description:
This test scenano venfies that all Frontend routes can request and get responses cormrectly
as expected.

Precondition: The front-end server must be running.

Step:
1. Request to expect route of webpage.
2. Venfy HT TP response.

Expected Result: The response should be 200

PRESENTATION WEATHERSENSE PROJECT

INTEGRATION TESTING TESTCASE

/WEATHER/ID (VALID)

Test Case title: GET request to “/weather/id” with valid id

Preconditions:
1.The front-end server IS running.
2 Back-end server is running.
3.Define valid id to test

Test step:
Go to route localhostxooxd/weather/id”
Verify response status code

Expected result: status 200

Test Scenario: Request to every web page route

Test environment: HTTF

Actual result: status 200

Status: Pass

PRESENTATION WEATHERSENSE PROJECT

INTEGRATION TESTING CODE

/WEATHER/ID (VALID)

WHEN USER REQUEST TO THIS ROUTE
RESPONSE SHOULD BE STATUS 200

PRESENTATION WEATHERSENSE PROJECT

INTEGRATION TESTING TESTCASE

/WEATHER/ID (INVALID)

Test Case title: GET request to “/weather/id” with invalid id

Preconditions:
1.The front-end server is running.
2 Back-end server is running.
3.Define valid id to test

Test step:
(3o to route localhostxooodweather/id”
Verify response status code

Expected result: status 404

Test Scenario: Request to every web page route

Test environment: HTTF

Actual result: status 404

Status: Pass

PRESENTATION WEATHERSENSE PROJECT

INTEGRATION TESTING EXAMPLE

/WEATHER/ID (INVALID)

WHEN USER REQUEST INVALID ID TO ROUTE
RESPONSE SHOULD BE STATUS 404

PRESENTATION WEATHERSENSE PROJECT

VITEST TEST RESULT

/test/integralTesting.test.s

rc/components/Navbartest,)s

c/components/TimestampHistory.test,s

re/components/Card.test.s
rc/components/Timestamp.test.js

/components/Footer.test.js

1TEST IS FAILED BECAUSE VITEST TRY TO RUN TEST OF
PLAYWRIGHT SO IT HAS CONFLICT BUT IT NOT EFFECT TO OTHER

PRESENTATION WEATHERSENSE PROJECT

POSTMAN TEST RESULT

GET MainPage
http: g v FE

PASS Response status code is 200
GET HistoryPage
http:/flocalhost:317 3fhistory

PASS Response status code is 200

GET WheaterByld

hittp: st 517 3/wea

PASS Response status code is 200

Frontend
E2E Testing

In end-to-end testing, we utilize

Playwright to simulate real-world
scenarios to ensure that users can
interact with our system effectively

and that it functions correctly.

PRESENTATION

WEATHERSENSE PROJECT

WEATHERSENSE PROJECT

TEST SCENARIO
AND SOME TEST CASE

IN FRONTEND E2E TESTING SHOW CASE

PRESENTATION

TEST SCENARIO

WEATHERSENSE PROJECT

Test Scenario:
Verifies that the website functions correctly and as expected from the user's

perspective.

Description:
This test scenano venfies that the user uses the web site to work correctly as

expected.

Precondition:
1. The frontend server I1s running.
2. The backend server IS running.
3. The ModelAPI| server is running.

Step:
1. Open the website in a web browser.
2. Nawvigate through different pages and functionalities of the website
3. Venty that all interactions and functionalities work as expected.

4 Test the website on different devices and browsers (if necessary).

Expected Result: All pages and features of the website load without errors.

PRESENTATION

E2ETESTING TESTCASE

USER GO TO MAIN PAGE

WEATHERSENSE PROJECT

Test Case title: In the home page all data Card components are rendered.

Preconditions:
1. All website services are running.

Test step:
1. (Go to route localhost oo™
2. Verify the page.

Expected result: All data displayed

Test Scenario: Venfies that the website functions correctly and as expected from the
users perspective.

Test environment: Chromium

Actual result: All data displayed

Status: Pass

PRESENTATION WEATHERSENSE PROJECT

E2ETESTING EXAMPLE

USER GO TO MAIN PAGE

ALL COMPONENT MUST BE LOADED

PRESENTATION WEATHERSENSE PROJECT

PLAYWRIGHT TEST RESULT

npx playwright test --project=chromium

el spec.s

User can go to main page and can click all the button navigation bar.

User can go to History page and View old weather data and go back to home.
In home page all data Card component are render.

In history page View button must loaded.

In another weather data board Data card must loaded

ALL TEST RESULT PASS

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

BACKEND SERVER TEST

WE DEGIDED TO TEST WITH POSTMAN

POSTMAN

WEATHERSENSE PROJECT

" Node EXpress
API testing

APl testing on the backend (Node.js Express)

server focuses on testing requests to API
endpoints and verifying that the responses are
correct as expected. This ensures that users

who want to utilize our APl endpoints receive

accurate response data, as communicated to

the frontend earlier.

PRESENTATION

PRESENTATION

TEST SCENARIO

WEATHERSENSE PROJECT

Test Scenario:
HT TP Request to Back-end Server

Description:
This test scenano vernfies that all Back-end APl endpoint work and return json
correctly

Precondition:
1. Back-end Server i1s running

Step:
1. HTTP request to expect endpoint.
2. Verify response.

Expected Result: response should return correctly as expected

WEATHERSENSE PROJECT
PRESENTATION

ENDPONT TEST CASE

/LATEST

Test Case title: GET HTTP Request to “/latest”

Preconditions:
1. Back-end Server is running

Test step:
1. HTTP GET request to “localhost:3000/".
2. Venfy the response.

Expected result: Response status and json are the latest weather data as expected.

Test Scenario: HT TP Request to Back-end Server

Test environment: HTTF

Actual result: Response status and json are the latest weather data as expected.

Status: Pass

WEATHERSENSE PROJECT
PRESENTATION

ENDPONT TEST

/LATEST

“id": 478,
"tsll :

-

"temp_sensox”: 27
RequestGetlLatestWeatherData R E'_ _" NS0T '
"humidity_sensor": 69,

—

“temp_api®: 37.83,

"humidity_api®: 44,
localhost:3000/1atest

‘pressure” ! 1085,

"wind_speed”:

SHOULD RETURN LASTEST WEATHER DATA

PRESENTATION WEATHERSENSE PROJECT

ENDPONT TEST CASE

/HISTORY

Test Case title: GET HTTP Request to “/history”

Preconditions:
1. Back-end Server i1s running

Test step:

1. HTTP GET request to “localhost:3000/history”.
2. Verify the response.

Expected result: Response status and json are all the weather data ordered by DESC.

Test Scenario: HT TP Request to Back-end Server

Test environment: HTTF

Actual result: Response status and json are all the weather data ordered by DESC.

Status: Pass

PRESENTATION WEATHERSENSE PROJECT

ENDPONT TEST

/HISTORY

. AT

L o A | r

—

"temp_sensoxr”: 27,
"humidity sensoxr": 69,
"temp_api®: 37.83,
"humidity_api®: 44,
‘pressure” : 1085,
"wind _speed”: 5.6
"cloudiness": 28,
"weather”:

SHOULD RETURN ALL ORDER DESCEND

PRESENTATION

ENDPONT TEST CASE

/WEATHER/ID

WEATHERSENSE PROJECT

Test Case title: HTTP GET Request to “/weather/id”

Preconditions:
1. Back-end Server is running
2. defined id

Test step:
3. HTTP GET request to “localhost:3000/weather/id".
4. Verify the response.

Expected result: Response status and json are the weather data specific id.

Test Scenario: HT TF Request to Back-end Server

Test environment: HTTF

Actual result: Response status and json are the weather data specific id.

Status: Pass

PRESENTATION WEATHERSENSE PROJECT

ENDPONT TEST

/WEATHER/ID

"id": 1,
|_I:I__||I oA O A ST D .
"temp_sensoxr”: 20,

"humidity =sensoxr": 5@,

http://localhost: 3000 /weather/1 "temp_api®: 36.83,

—

"humidity_api®: &7,
"pressure™: 1804,
"wind speed": 5.66,
"cloudiness": 28,

"weather”: "Clouds",

"weather pred”:

SHOULD RETURN WEATHER DATA GIVEN ID

PRESENTATION WEATHERSENSE PROJECT

POSTMAN APITEST RESULT

GET RequestGetLatestWeatherData

GET RequestWeatherDataByID

ALL TEST AND TEST CASE RESULT PASS

WEATHERSENSE PROJECT

'ModelAPI
Server (Flask

API testing in this context ensures that users

who wish to utilize our model can send a POST
request to our API, and our backend receives

the correct response containing the predicted
data.

PRESENTATION

PRESENTATION

ENDPONT TEST SCENARIO

WEATHERSENSE PROJECT

Test Scenario:
HT TP Request to ModelAFP|-Server

Description:
This test scenano verifies that ModelAPI-Server]l endpoint work and return json
cormectly

Precondition:
1. ModelAPl-Server 1s running.

2. defined a data to send to predict a model.

Step:
1. HTTP request to expect endpoint.
2. Venfy response.

Expected Result: response should return correctly as expected

PRESENTATION WEATHERSENSE PROJECT

/PREDICT TESTCASE

/PREDICT

Test Case title: HTTP POST Request to /predict”

Preconditions:
1. ModelAPIl-Server is running
2. defined a data to send to predict a model.

Test step:

5. HTTP GET request to “localhost:5000/predict”.
6. Venfy the response.

Expected result: Response status and json are the same data but have new attnbute
name “weather pred” and its value.

Test Scenario: HI TP Request to ModelAPI-5Server

Test environment: HT TF

Actual result: Response status and json are the same data but have new attribute name
‘weather pred” and its value.

Status: Pass

PRESENTATION WEATHERSENSE PROJECT

/PREDICT TESTCASE

/PREDICT

RESPONSE

-1,

)] L - S N R r mw o,
:N=0L .

"temp_sensor": 25,

- o] “humidity sensoxr": 5@,
wumldity_sensoxr - 58, . . - .
— ; te api®: 31.83
"temp_api”: 31.83 2 LA SRklia
. ' [] o m e 1 u u —
- ! "humidity_api®: 73,
m | » = _ =, e La]
humidity_api®: 73, " ressure®: 1816
Tl N Tl a Tl L .r

11 1] T e
ressure” @ 1818 . .
preEssUre Hatliy "wind_speed": 5.66,

"'II. '-i ~1aT-T-T | . E P :
] | I | IJLII—"—'J] i I_ I— r u o ! |- 1= of = L : '_.l:ll
11 | ::I II'I i I I'H: (=
o L - - r

"cloundine

== A "weather™:
‘'weather”: e ouds :

RESPONSE SHOULD BE EXPECTED

PRESENTATION DATABASE SYSTEM PROJECT

POSTMAN APITEST RESULT

POST single prediction

POST multiple prediction

ALL TEST AND TEST CASE RESULT PASS

PRESENTATION WEATHERSENSE PROJECT

GITHUB

YOU CAN SEE MORE

SCAN ME

HTTPS://GITHUB.COM/QOSANGLESZ/WEATHERSENSE

WEATHERSENSE PROJECT

PROJECT MEMBER

1. WISSARUT KANASUB

2. SUKPRACHOKE LEELAPISUTH

