Group assignment report: WeatherSense

Prepared For

Assoc. Prof.Dr.Kitsana Waiyamai

Prepared By

6510545748 Sukprachoke Leelapisuth (Dropped)
6510545721 Wissarut Kanasub

This Project is collected and evaluated in 01219367 Data Analytics
Software and knowledge Engineers

Primanry data

Our primary data is collected by the Kidbright board, incorporating

a temperature and humidity sensor from the KY-015 module, and using
MQTT to send a data to NodeRED

Secondary Data

Our secondary data is collected by call api from OpenWeatherMap

API (Current weather) Using NodeRED to fetch data from API

attribute select:
e Humidity (%)

Dfﬂoura o E)
:: [:IJumrong)

g) weathermap.org ()
b6510545748/sens0rs -—-\‘_/ » 1 J
1 () join2 (=—— SetAftributes (- - 1se_gather - :_:

@ connect ted

Temperature (degree celsius)

Pressure (hPa)

Cloundiness (%)

Weather: such as Cloud, Few clouds etc.

Z:‘.

(NodeRED in use)

Merge primary data and secondary and upload to our database

Our database table structure below:

&% Table structure 42 Relation view
Name Type Collation

O 1id > int
O 2zt 2 timestamp
[] 3 temp_sensor float
1 4 humidity_sensor float
] 5 temp_api float
[6 humidity_api float
[] 7 pressure float
] & wind_speed float
[9 cloudiness float
] 10 weather varchar(255) utf8mb3_general_a
1+ [checkall With selected: [=] Browse &

All attributes will be used

Attributes Null Default

No

No

No

No

No

No

No

No

No

No

None

CURRENT_TIMESTAMP

Nene

Neone

None

Nene

None

None

None

Neone

Change @ Drop

> Primary

m Unique

Comments Extra
AUTO_INCREMENT &

=] Index

Action

DEFAULT_GENERATED

&

R 0% 0 BO% OB R OR

[Spatial

Change @ Drop
Change (g Drop
Change @ Drop
Change (@ Drop
Change @ Drop
Change (@ Drop
Change @ Drop
Change & Drop
Change @ Drop
Change (@ Drop

¥] Fulltext

More
More
More
More
More
More
More
More
More

Maore

Data Exploration

Using python Pandas to explore and preprocessing more over

training a model.

e Checking data type of dataframe

temp api

humidity api

e Then we need to change type of ts to DateTime type

data["ts"'] pd.to_datetime(datal['ts'])

display(data.head())

e Retrieve a summary statistic of this dataset.

ts temp_sensor humidity sensor temp_api humi i cloudiness

count

e For categorical features using count plots.

Countplot of weather

1200 +

1000 4

800 7

600

400

200 ~

&

&
<>°°b €

weather

From the histogram plot, it's evident that the data clouds contain a large
number of values, whereas instances of rain are scarce. This imbalance
can lead to a data problem, which we need to address during the
preprocessing stage.

For numerical features using histogram plot to find a distribution.

Histogram of humidity_sensor

250 A —

200 4

H
v
o

|

Frequency
.

<

—

—
(=]
o

50 4

T T T T T f T
30 40 50 60 70 80 90
humidity_sensor

Histogram of temp_sensor

500 A

400 A

Frequency
w
Q
(=]

200

100 H/-\\
1_a 2 ! :

f ? ;
22 24 26 28 30 32 34
temp_sensor

Histogram of temp_api

250 4

200 1

150 1

Frequency

100 +

30 32 34 36 38 40
temp_api

Histogram of humidity_api

250 1

200 4

=

w

o
L

Frequency

100 1

30 40 50 60 70 80 90
humidity_api

Histogram of pressure

250 A

200

Frequency
[}
wu
S
|

100 1

1000

1002

1004 1006 1008 1010
pressure

Histogram of wind_speed

200 A

150 ~

Frequency

100 A

3 4 5 6 7 8
wind_speed

Histogram of cloudiness

1200 A

1000

800

600

Frequency

200 A

T T T T
20.0 225 25.0 275 30.0 32.5 35.0 37.5 40.0
cloudiness

e Use heatmap to find missing data.

-0.100

-0.075

0.050

0.025

0.000

===
NEEHEOOO
oo Wwo
QXL ORRWRWN o

-0.025
—0.050
—0.075
—0.100
= s 5 3 & & ¢t 3 § B
2 2 { I 2 2 c b=}
« () o > w = ©
n 0 £ = @ Ml B
a o 5 = £ o 3 g
= = £ = -
£ 3] v
2 = 2
£
E
=

e Plot time series graph among numerical features to find a trend of
data in the future.

Values

Values

10

Time Series Graph of Temperature

—— Temperature Sensor
—— Temperature APl
40.0
37.5
35.0 \
Il §
| ‘ ‘ Y
32.5 H ‘ ’
30.0
27.5
25.0
22,5
T T . T . T . T
fike hid > a e 3 & & g
o o o o g & o & &
o o o N ¥ ¥ ¥ o o
° ° 0 ° ° ° »° ° °
Time
Time Series Graph of Humudity
—— Humidity Sensor
Humidity API
90
80 l
\ fl n _h
I‘I Fl IM‘ H I i
[l I , h \
/ | (i |
70 /
ﬂ | |
[I || |
\ | |
60 U
50 |
40 4
30 4
. T T . T . T . T
&) o A o & <)) A
Quw QN'L QN’L Qm'l, QN’L 0"0 Q‘),o Q"’Q g‘)b
o A X o ¥ A o A .
° ° ° ° ° ° ° ° P

Time

Time Series Graph of Pressure

11

—— Pressure
1010
1008
1006 -
w1
[
)
z
1004
1002
1000
" T T T .
~ “] % 6 3
& i i & & &
w w o ¥
4 3V 3 4
° > ° ° » °
Time
Time Series Graph of Wind Speed
—— Wind Speed
E -
7
6 -
5 -
w0
@
3
g
ad
3 -
Py
1
" T T T T T T T T
fig e P e S & g &
o o o o & & & &
o o o o o o o o
P P w" w" w" w" P P

Time

Use Heatmap to show correlation among numerical features

12

temp_sensor

humidity_sensor

temp_api

humidity_api

pressure

wind_speed

cloudiness

day_of week

month -

0.035

0.019

-0.078

0.094

0.048

id

0.32

0.15

0.035 0.019 -0.078 0.094 0.048 @ 0.32

. -0.074 0.055 “k 0.2 .16 0.0028 | 0.31
015 -0.074 . 0.57 . . -0.16 . 0.079
S0l . b -0.0009 0.025
21k1, . . -0. .13 0.027

0.055

-0.29

0.0028

0.31

0.099

temp_sensor

0.2

0.079

humidity_sensor

=AL1E] 0.3 . -0.22 0.26 -0.029 -

gt -I).()?? =0.24

-0.0009 0.13 0.26 -0.077 0.059
0.027 -0.029 -0.24 0.059 0.16 -0.043

-0.056 -0.0091 -0.11 0.019 0.028 0.16 0.18

O8N -0.51 -0.3 0.36 | -0.096 -0.043

temp_api
humidity_api
pressure
wind_speed
cloudiness
day_of_week

-0.0091 -0.

0.099

-0.056

0.019

0.028 -0.096

-0.18

month
hour -

-1.00

-0.75

0.50

0.25

0.00

—-0.25

—0.50

—0.75

Find average percentage error of temperature from sensor and api

7.75 Percent

Find average percentage error of humidity from sensor and api

19.21 Percent

Data Preprocessing

e Convert ts to new columns day_of week, month, hour then
drop ts
because we need use these data columns for training model

13

data["day_of week™] data["ts"].dt.dayofweek
data["month"] data["ts"].dt.month
data["hour"] data["ts"].dt.hour

data.drop("ts", axis=1, inplace=True)
display(data.head())

e No need to handle outliers due to in dataset different weather can
make cause of extreme value examples.

e The humidity on a sunny day must be low but on a rainy day
it is very high etc.

e Predictor and target split:

X = data.drop(["weather"], axis=1)

y = data["weather”]

e Scale data with standard scaler before pca technique step

Cumulative Explained Variance

14

standard_scaler StandardScaler()
X scaled standard scaler.fit_ transform(X)
display(X_scaled)

e Plot cumulative variance by component to select number of
component to using in PCA technique

Cumulative Explained Variance by Components

1.0

0.9 1

0.8 1

0.7 1

0.6 1

0.5 1

0.4 1

0.3

2 4 B 8 10
Number of Components

e From plot we select number of component is 5 because it
near to 80 percent

15

e Then We adapt PCA 5 components to our data

pca None
pca PCA(n_components=5)
pca.fit(X scaled)

X_pca = pca.transform(X_scaled)
display(X pca)

e Using a SMOTE technique to prevent Imbalanced Data.

Imbalanced data : refers to a situation in classification problems where the
distribution of classes in the dataset is highly skewed, meaning that one
class is significantly more prevalent than the others. This imbalance can
lead to biased models that perform poorly in accurately predicting the
minority class, as the model may become overly biased towards the
majority class.

SMOTE : (Synthetic Minority Over-sampling Technique) is a method used to
address class imbalance in datasets by generating synthetic examples of
the minority class. It works by creating new synthetic instances along the
line segments joining existing minority class instances, thereby balancing
the class distribution and improving the performance of machine learning
models on imbalanced datasets.

16

Why SMOTE?: During summer, our data collection predominantly reflects
sunny conditions with fewer instances of rain. This imbalance can arise due
to the larger volume of sunny data compared to rainy data.

smote = SMOTE()

X_resampled, y resampled = smote.fit_resample(X_pca, y)

display (X resampled)
display(y_resampled)

Modeling

We use Random Forest classification techniques to predict
weather because Random Forest is a type of machine learning that

creates a group of decision trees. It's straightforward to use and often
gives excellent results without needing fine-tuning.

Pros:

e Versatility: Random Forests can do both classification and
regression tasks.

e Data Compatibility: Works with categorical and numerical data
without needing scaling.

e Feature Selection: Automatically picks relevant features.

17

e Qutlier Resilience: Handles outliers well.

e Relationship Handling: Works with linear and non-linear
relationships.

e Accuracy: Often provides high accuracy.

e Bias-Variance Balance: Balances bias and variance effectively.

Cons:
e Interpretability: Not easy to interpret like linear regression.
e Computationally Intensive: Can be slow for large datasets.

e Black Box Nature: Limited control over model workings.

Modeling Step
e setup before start:

o Predictors are all attributes
o Target “weather”

e Split train test technique:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)

e Use LabelEncoder to encode y_train (weather) that categorical
data to numerical data to Use to train model

label_encoder = LabelEncoder()
y_train_encoded = label_encoder.fit_transform(y_train)

display(y_train_encoded)

e Next step i choose “Grid search CV technique” to find a best
n-estimate of RandomForestClassification model

GridSearchCV helps find the best settings for a model by trying
different options and picking the one that works best. It's like
testing different ingredients for a recipe to make the tastiest dish.

param_grid = {
‘n_estimators': range(10, 201, 10)

}

rf_classifier = RandomForestClassifier(random_state=1)

grid_search = GridSearchCV(estimator=rf_classifier, param_grid=param_grid, cv=5, scoring="accuracy")

grid_search.fit(X_train, y_train_encoded)

best_n_estimators = grid_search.best_params_['n_estimators']
best_score = grid_search.best_score_

print(“Best Number of Estimators:", best_n_estimators)
print(“Best Accuracy Score:", best_score)

e After finding the best n-estimate we training a model again

19

rf_classifier
rf_classifier

None

RandomForestClassifier(n_estimators=best_n_estimators, random_state=1)

rf_classifier.fit(X_train, y_train_encoded)

e Prediction X test

predictions_encoded rf_classifier.predict(X_ test)
predictions

display(predictions)

label encoder.inverse_transform(predictions_encoded)

e Evaluate the model

class_report

conf_matrix

accuracy accuracy score(y_test, predictions)
("Accuracy:", accuracy)

classification_report(y_test, predictions)

("Classification Report:\n", class_report)

confusion_matrix(y_test, predictions)

("Confusion Matrix:\n", conf _matrix)

True Labels

recall 1

Confusion Matrix

Predicted Labels

Support

20

200

150

- 100

- 50

21

Possible Application

e Forecasting: Providing accurate weather forecasts for
various locations and time intervals, helping individuals and
organizations plan their activities accordingly.

e Agriculture: Assisting farmers in making informed decisions
about planting, harvesting, irrigation, and pest control
based on weather predictions.

e Travel: Helping travelers plan their trips by providing
weather forecasts for their destinations, ensuring they have
a pleasant experience.

e Transportation: Enhancing transportation safety and
efficiency by predicting weather-related hazards such as
storms, heavy rainfall, or snowfall.

WeatherSense website

WeatherSense Home History Github Contact

Latest update on April 20, 2024 at 3:10 AM

WeatherSens OpenWeatherMap

Clouds few clouds

Temperature WeatherSense Temperature OpenWeatherMap Pressure

28 °C 31.74°C 1005 Hectopascal
Humidity WeatherSense Humidity OpenWeatherMap Wind Speed

64 Percent 89 Percent 412 m/s

Cloudiness API API

20 Percent 30 degree Celsius 30 degree Celsius

22

WeatherSense

Home History Github Contact Data Visualize

WeatherSense OpenWeatherAPI
—Coucs . Rain —Cloucs mm Rain
Thunderstom

\J

Temperature Sensor °C Histogram Temperature API °C Hi: Cloudi Percent Histogram
requences frequences requencies requencies

1400 500 1400 1200
1200 50 1200 1000
1000 0 1000 a0

a0 a0

0 a0

500 50

400 200 40 400

200 100 200 200

0 3 3 = o

005 1620 2125 2630 335 Bd0 4145 4650 W95 1620 2125 2630 33 B40 45 4650 120 240 460 60 a0 12 240 e
Humidity API Percent Histogram Wind Speed m/s Histogram Pressure HectoPascal g Temg
requencies requencies requencies

a0 350)
700 300 800 f 80
: \ ‘
o 250 a0 ™ .
w 20 | o
bt 150 0 o
200 100 o a0 -

6180

ity Sensor Percent Histogram

81100

23

Reference
e https://medium.datadriveninvestor.com/random-forest-pr
os-and-cons-c1c42fb64f04

e 15U Parameters 21aviutaa Machine Learning 628
GridSearchCV Tu Scikit-Learn | by Kan Ouivirach |

Medium

o ilaunnziaya‘lisiuaa (Imbalanced Data in Classification

Model) - NT Cloud Solutions (ntplc.co.th)

https://medium.datadriveninvestor.com/random-forest-pros-and-cons-c1c42fb64f04
https://medium.datadriveninvestor.com/random-forest-pros-and-cons-c1c42fb64f04
https://zkan.medium.com/%E0%B8%9B%E0%B8%A3%E0%B8%B1%E0%B8%9A-parameters-%E0%B8%82%E0%B8%AD%E0%B8%87%E0%B9%82%E0%B8%A1%E0%B9%80%E0%B8%94%E0%B8%A5-machine-learning-%E0%B8%94%E0%B9%89%E0%B8%A7%E0%B8%A2-gridsearchcv-%E0%B9%83%E0%B8%99-scikit-learn-34e1d464fe79
https://zkan.medium.com/%E0%B8%9B%E0%B8%A3%E0%B8%B1%E0%B8%9A-parameters-%E0%B8%82%E0%B8%AD%E0%B8%87%E0%B9%82%E0%B8%A1%E0%B9%80%E0%B8%94%E0%B8%A5-machine-learning-%E0%B8%94%E0%B9%89%E0%B8%A7%E0%B8%A2-gridsearchcv-%E0%B9%83%E0%B8%99-scikit-learn-34e1d464fe79
https://zkan.medium.com/%E0%B8%9B%E0%B8%A3%E0%B8%B1%E0%B8%9A-parameters-%E0%B8%82%E0%B8%AD%E0%B8%87%E0%B9%82%E0%B8%A1%E0%B9%80%E0%B8%94%E0%B8%A5-machine-learning-%E0%B8%94%E0%B9%89%E0%B8%A7%E0%B8%A2-gridsearchcv-%E0%B9%83%E0%B8%99-scikit-learn-34e1d464fe79
https://ntcloudsolutions.ntplc.co.th/knowledge/imbalanced-data-classification/
https://ntcloudsolutions.ntplc.co.th/knowledge/imbalanced-data-classification/

